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Abstract. As the Martinelli-Parisi expansion of recursive relations of the real space 
renormalisation group is not uniquely defined we test a recently proposed criterion for 
choosing among the different possibilities. We deal with the Z(2)  lattice gauge theory on 
a cubic lattice. Many alternatives are considered; all of these agree in the evaluation of 
the critical coupling constant and in excluding a second relevant operator at the non-trivial 
fixed point. 

1. Introduction 

Recently one of us computed the first order correction in the Martinelli-Parisi expansion 
[ 11 for the simplest non-trivial lattice gauge theory, i.e. for the three-dimensional Z(2) 
model [2]. A significant improvement in the estimate of the critical coupling constant 
has been achieved. On the other hand, the Migdal-Kadanoff ( M K )  fixed point [3] 
acquires a new relevant direction and no longer governs the critical behaviour of the 
model with the Wilson action. 

In [4] it has been shown that the Martinelli-Parisi expansion is not uniquely defined 
and that its predictions are strongly dependent on a choice of the potential shifting 
term. A general criterion to remove this ambiguity has been used in the two-dimensional 
Potts model in which only one more coupling constant is generated at first order and 
gives evaluations of critical quantities in good agreement with known results. 

Before applying this strategy to more interesting gauge systems, it seems to us 
worthwhile to see it at work in the already complex recursion relations of the three- 
dimensional Z(2)  case. Such complexity appears with the generation of many coupling 
constants whose contribution is obtained through a structured sequence of computa- 
tions and will be described in 0 2. Various possible generalisations of the way in which 
one can here solve the ambiguity in the expansion are also discussed. Section 3 presents 
the different results, while some comments appear in the conclusion (0  4). 

2. Recursion equations 

We shall consider the model with the action 
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where the cr are Z(2) variables defined on links over a cubic lattice and (ijkl) are the 
links on the contour of an elementary plaquette. P denotes the coupling constant. At 
first order of the Martinelli-Parisi expansion all possible interactions on an elementary 
cube will be generated. We shall write them as (p ,  &y l ,  & y 2 ,  &y3, E Y ~ ) ,  where E is a 
parameter associated with the magnitude of the shifted potential. y are coupling 
constants of the interactions with the three-dimensional configurations (see [2]). 

If one formally develops 

P = / 3 0 + E P , + E 2 p 2 + . . .  (2.2) 

the first order correction to the M K  recursion equation can be written as [ 2 ]  

where i a n d j  run from 1 to 4. The numerical values of bo, b;, Aoo, Aoi and Aij at the 
MK fixed point are given in the appendix. 

The ambiguity in the Martinelli-Parisi expansion discussed in [2] arises from 
possible choices of the coupling constants in front of the plaquette shifting terms. 
Each such coupling constant in the x, y and z direction dilatations can take a 
contribution from the O ( E )  coupling constants. In any case the requirement of sim- 
plicity has limited us to considering only those coupling constants present in the 
symmetric case. Within this restriction, there are still two possibilities; In the first 
case, one can replace the P in the first potential shifting term with the /3 given by 

p' p + E x,y;. 
I 

In this way, the strength of the inner plaquettes in the yz  direction 

while that of the outer ones is 

P +(1  - E ) (  P + E X&) = 2 ( P o +  & P I )  - E (  P o - ?  X'Y,). 

(2.4) 

is 

(2 .5 )  

Such a change amounts to formally replacing &Po by &(Po - 2 ,  x i y i ) .  
In the second case, one can introduce the effect of such a transformation only in 

the symmetric final equations (2.3). These two possibilities coincide in the case in 
which only one potential shifting is performed to get the recursion equations as in the 
simple case with a single new coupling constant of the 2~ Potts model [4]. 

It has been proposed to remove this ambiguity by minimising the effect of the 
perturbative operators with the strength E?, to the renormalisation of the unperturbative 
coupling constant p' at the non-trivial fixed point. In this case, since many coupling 
constants yi are present, it is possible to minimise the effect of each of them, imposing 
the relations 

where p" is P ' +  & X i  xi?: and the primes denote the quantities on the rescaled cubic 
lattice. p'* and { y ? }  are the fixed points of the recursion equations. 
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On the other hand, introducing a single x parameter, one can choose to minimise 
simply the total contribution of the perturbative operators by 

All these possibilities will be analysed in the following section. 

3. Results 

Let us start from the case in which we simply replace Po with Po - E E l  x,y, in equation 
(2.3). The relations (2.7) give rise to the conditions 

- (bo + Aoo)x~ + Aot -c X J [  ~ J X I  - ' ] I ]  = 0 (3.1) 
I 

which are equivalent to the system of equations 

The first part of (3.2) has the solutions 

x1 Cc AoJ?i')  [Bit/(bo+Aoo+ K - A I ) ]  (3.3) 

c B I ~ A ~ ~ B , ~ '  = A&. (3.4) 

I n  

where the matrix B diagonalises the matrix A with eigenvalues { A l ;  i = 1-4}: 

LJ 

Inserting the solutions (3.3) into the second part of (3.2), we get a polynomial equation 
of fifth degree in K. 

As a consequence of (2.7), the recursion equation for p, becomes 

6; = (bo+ K )P,* + AooP,. (3.5) 
The fixed point solution of this equation should be comparatively small with respect 
to p,*. This fact determines the region in which solutions for K must be researched. 
We numerically find only one solution at K = 0.623. The corresponding { x , }  are given 
in the appendix as x l ( I ) .  We obtain the critical coupling constant P l c ( I )  

/ 3 1 ~ = ~ ~ = [ ( b o +  K)P:]/(l -Aoo)= -0.266. (3.6) 
As the matrix elements All of (2.3) are now replaced by AI, - blxl(I), the eigenvalues 

of the linearised renormalisation group equation at the zeroth order are changed. They 
are reported in the appendix as {&(I)}. A remarkable feature is that there is no longer 
a relevant eigenvalue in contrast to the x ,  = 0 case [2]. This means that the non-trivial 
fixed point p*, { y : }  is now responsible for the critical behaviour of the model (2.1). 

As we have observed, one can use a single x parameter by the criterion (2.8). We 
have tried the case 

x ,  = x for all i (3.7) 
which leads to 
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The fixed point solution for the y, is given by 

where C, and C are 
r?=C,P”) (3.9) 

(3.10) 

The matrix B and the eigenvalues A /  are the same as before (see (3.4)).  Inserting (3.9) 
into (3.8), we arrive at the second order equation in x 

X’ C C b, + x b, + C(  bo + A00 - 1 )  -C A,C,  = 0. ( 3 . 1 1 )  

Only one solution of (3.11),  i.e. x(I1) =3.221, gives a reasonable result when inserted 
in (3.6) where K is now K = x(II)Z, b, = 0.640, and we get the correction to the critical 
coupling constant 

Plc(Il) = -0.286. (3.12) 
The eigenvalues {AI(II)} of the matrix A,, -x(II)b, are collected in the appendix. As 
in the previous case, all of them are irrelevant. 

When we are concerned with the other possible approach suggested in 9 2 in which 
the replacement (2.4) is introduced only in the first potential shifting term, the criterion 
(2.7) leads to a set of conditions similar to (3.1). But now since bo and {b,} can be 
written as to+ so and { t ,  + sz}, where to and { t , }  are the contributions obtained by the 
first decimation, only the terms of the form tPo must be changed into t (~o-X,x ,y , )  
(see the appendix for t values). Therefore equation (3.3) gives the solutions {x,(III)} 
with K = X,x,(III)t, = 0.269. On the other hand, in (3 .5)  K will still be K = Xlx,(III)b, = 
0.552. As a consequence, the critical point is now 

PIc(II1) = -0.183. (3 .13)  
The linearised matrix around the fixed point has the eigenvalues {A,(III)} of the matrix 
A,, - t,x,(III) reported in the appendix. 

Moreover, the criterion (2.8) leads to an equation similar to (3.8) with the replace- 
ment (bo, {b,}) + ( lo ,  {t,}). The fixed point solution for the y, are given by 

J (, ) I  

c, + x(  C,C‘ - c IC) 
yy = Po* 1 + XC’ 

(3.14) 

where C, and C are the same as in (3.10) and C: and C‘ are obtained from C, and 
C with the change of the b into t as before. The equation for x becomes 

x’C’ 

Here also only one of the solutions is interesting. It is x(IV) = 2.852, and we get 

P,C(IV) = -0.200. (3.16) 
For the eigenvalues {A,(IV)}, see the appendix. These eigenvalues also stay irrelevant, 
as in the three previous cases. We observe that the eigenvalue A’ is always approximately 
the same. As concerns A 3  and Ad, the cases (111) and (IV) give the same result as that 
of the x = 0 case. By contrast, they do not look well defined in the cases (I)  and (11), 
where they become complex in the former case and A 3  is negative in the latter. In any 
case they are always very small. 

b, + x C b, + C (  t o +  Am - 1 )  - Aot( C,C‘- C:C) -C Ao,C, = 0. (3 .15)  
1 (, 1 1 1  
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4. Conclusions 

The Martinelli-Parisi expansion should provide a systematic improvement to the 
Migdal-Kadanoff recursion equation for the real space renormalisation group. It 
should be of considerable relevance in producing accurate formulae for the lattice 
gauge theory. As the 3~ Z(2)  case is already an intricate model from such a point of 
view we have chosen it to test a novel criterion which should indicate how to construct 
this expansion in order to obtain reliable extrapolations in the critical region. 

The main idea is that one can minimise the formally perturbative terms trying to 
make the series convergent. Due to the complexity of the starting calculation there 
appear many ways to substantiate such an attempt. Our first result is that all these 
possibilities give rise to the same kind of results. Secondly, the explicit calculation of 
the critical coupling constant leads to the first order evaluations 

pc(1) =0.871 

Pc(1I) =0.861 

pc-111) =0.913 

pc( IV) = 0.904 

(4.1) 

where the critical value which is obtained by the duality argument is pc = 0.761. These 
values are not as good as in the x = 0 case pc = 0.767 [2], but are still an improvement 
with respect to the MK result pc = 1.0044. But what is more important is that in contrast 
to the previously considered computations [2] the critical behaviour always stays 
regulated by the non-trivial fixed point of the recursive equations. In fact the result 
of [2], in which a second relevant direction appeared at the MK fixed point, might be 
interpreted by the analysis of [5] and [6] as a pathology of the expansion in the 
presence of a crossover from second to first order phase transition. 

So it is remarkable that with our choices such a mechanism does not occur and 
that there is evidence for a second order phase transition in agreement with what is 
known. We therefore think that approximate recursion equations of this type can still 
play a role in the study of gauge theories. 
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Appendix 

We give the numerical values of bo, b ,  Am, Aoi and A, in the recursion equations (2.3); 

-0.395 

7.799 x 

(Aoo, A,,, A02, Ao-,, Ao4) = (1.861, 1.225,4.913, 1.694, 2.537) 
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1.057 7.299 3 .511  3.766 
0.882 0.801 0.145 1.382 

{Ai’’= 0.531 5.193 2.644 2.319 i 0.589 1.388 0.476 1.309 

The to and ti appearing in the cases (111) and (IV) in 0 3 are given by 

3.325 

The following numerical values are of xi  and hi for the cases (1)-(IV): 

XI 0.981 0.881 
X2 4.650 3.221 4.124 2.852 
x3 1.896 1.665 
1 4  2.484 2.199 

A I  0.433 0.472 0.796 0.799 1.065 
A 2  0.138 0.140 0.138 0.138 0.138 

0.009 - 0.043 0.009 0.008 0.009 
‘3 +0.002i 

0.009 0.004 0.001 0.001 0.001 
- 0.002 i A4 
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